Differences
This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
publications [2020/02/12 14:58] admin |
publications [2025/05/18 20:41] (current) group |
||
---|---|---|---|
Line 1: | Line 1: | ||
~~NOTOC~~ | ~~NOTOC~~ | ||
- | {{ :grouppicture_2019_-_1.jpg?nolink&800|}} | + | {{ :group_picture.jpeg?nolink&800|}} |
\\ | \\ | ||
\\ | \\ | ||
\\ | \\ | ||
===Publications=== | ===Publications=== | ||
+ | |||
+ | Pallasdies F, Norton P, Schleimer J-H, Schreiber S (2025): **Neuronal synchronization and bidirectional activity spread explain efficient swimming in a whole-body model of hydrozoan jellyfish.** [[https://doi.org/10.1523/JNEUROSCI.1370-24.2025|J Neurosci, 45(20): e1370242025]]. | ||
+ | |||
+ | Behbood M, Lemaire L, Schleimer J-H, Schreiber S (2024): **The Na+/K+-ATPase generically enables deterministic bursting in class I neurons by shearing the spike-onset bifurcation structure.** [[https://doi.org/10.1371/journal.pcbi.1011751|PLoS Comput Biol, 20(8): e1011751]]. | ||
+ | |||
+ | Weerdmeester L, Niemeyer N, Pfeiffer P, Billaudelle S, Schemmel J, Schleimer J-H, Schreiber S (2024): **Qualitative switches in single-neuron spike dynamics on neuromorphic hardware: implementation, impact on network synchronization and relevance for plasticity.** [[https://iopscience.iop.org/article/10.1088/2634-4386/ad2afc/meta|Neuromorphic Computing and Engineering 4, 014009]]. | ||
+ | |||
+ | Gowers R, Schreiber S (2024): **How neuronal morphology impacts the synchronisation state of neuronal networks.** [[https://doi.org/10.1371/journal.pcbi.1011874|PLoS Comput Biol, 20(3): e1011874]]. | ||
+ | |||
+ | Byvaltcev E*, Behbood M*, Schleimer JH, Gensch T, Semyanov A, Schreiber S, Strauss U (2023): **KCC2 reverse mode helps to clear postsynaptically released potassium at glutamatergic synapses**, [[https://doi.org/10.1016/j.celrep.2023.112934|Cell Reports 42(8), 112934]]. *Equal contribution. | ||
+ | |||
+ | Hürkey S, Niemeyer N, Schleimer JH, Ryglewski S, Schreiber S, Duch C (2023): **Gap junctions desynchronize a neural circuit to stabilize insect flight**, [[https://doi.org/10.1038/s41586-023-06099-0|Nature 618, 118–125]]. | ||
+ | |||
+ | Hesse J, Schleimer J-H, Maier N, Schmitz D, Schreiber S (2022): **Temperature elevations can induce switches to homoclinic action potentials that alter neural encoding and synchronization**, [[https://doi.org/10.1038/s41467-022-31195-6|Nature Communications 13: 3934]]. | ||
+ | |||
+ | Norton P, Benichov JI, Pexirra M, Schreiber S, Vallentin D (2022): **A feedforward inhibitory premotor circuit for auditory–vocal interactions in zebra finches**, [[https://doi.org/10.1073/pnas.2118448119|PNAS 119(23): e2118448119]]. | ||
+ | |||
+ | Pfeiffer P, Barreda Tomás FJ, Wu J, Schleimer J-H, Vida I, Schreiber S (2022): **A dynamic clamp protocol to artificially modify cell capacitance.** [[https://elifesciences.org/articles/75517|eLife 2022;11:e75517]]. | ||
+ | |||
+ | Remme MWH, Bergmann U, Alevi D, Schreiber S, Sprekeler H, Kempter R (2021): **Hebbian plasticity in parallel synaptic pathways: A circuit mechanism for systems memory consolidation.** [[https://doi.org/10.1371/journal.pcbi.1009681|PLoS Comput Biol 17(12): e1009681]]. | ||
+ | |||
+ | Pallasdies F, Norton P, Schleimer J-H, Schreiber S (2021): **Neural optimization: Understanding trade-offs with Pareto theory.** [[https://doi.org/10.1016/j.conb.2021.08.008|Curr Opin Neurobiol, 71:84-91]] or on [[https://arxiv.org/abs/2105.01395|arXiv]]. | ||
+ | |||
+ | Niemeyer N, Schleimer J-H, Schreiber S (2021): **Biophysical models of intrinsic homeostasis: Firing rates and beyond.** [[https://doi.org/10.1016/j.conb.2021.07.011|Curr Opin Neurobiol, 70:81-88]] or on [[https://arxiv.org/abs/2203.14870|arXiv]]. | ||
+ | |||
+ | Peng Y, Barreda Tomas FJ, Pfeiffer P, Drangmeister M, Schreiber S, Vida I, Geiger JRP (2021): **Spatially structured inhibition defined by polarized parvalbumin interneuron axons promotes head direction tuning.** | ||
+ | [[https://advances.sciencemag.org/content/7/25/eabg4693|Science Advances, 7(25): eabg4693]]. | ||
+ | |||
+ | Contreras SA, Schleimer J-H, Gulledge AT, Schreiber S (2021): **Activity-mediated accumulation of potassium induces a switch in firing pattern and neuronal excitability type.** | ||
+ | [[https://doi.org/10.1371/journal.pcbi.1008510|PLoS Comput Biol 17(5): e1008510]]. | ||
+ | |||
+ | Schleimer J-H, Hesse J, Contreras SA, Schreiber S (2021): **Firing statistics in the bistable regime of neurons with homoclinic spike generation.** | ||
+ | [[https://link.aps.org/doi/10.1103/PhysRevE.103.012407|Phys Rev E, 103, 012407]]. | ||
+ | |||
+ | Rose P, Schleimer J-H, Schreiber S (2020): **Modifications of sodium channel voltage dependence induce arrhythmia-favouring dynamics of cardiac action potentials.** [[https://doi.org/10.1371/journal.pone.0236949| PLoS ONE 15(8): e0236949]]. | ||
Pfeiffer P, Egorov AV, Lorenz F, Schleimer J-H, Draguhn A, Schreiber S (2020): **Clusters of cooperative ion channels enable a membrane-potential-based mechanism for short-term memory.** [[https://elifesciences.org/articles/49974| eLife 2020;9:e49974]]. | Pfeiffer P, Egorov AV, Lorenz F, Schleimer J-H, Draguhn A, Schreiber S (2020): **Clusters of cooperative ion channels enable a membrane-potential-based mechanism for short-term memory.** [[https://elifesciences.org/articles/49974| eLife 2020;9:e49974]]. |